Testing for and Evaluating the Extent of Selective Reporting

Nikolay Kudrin Queen's University

February 27, 2025

- How can we test for (the absence of) selective reporting?
 - > Exploit the distribution of published results t-stats or p-vals
- Challenges:
 - Composite Null p-curve shape depends on power in underlying studies
 - Composite Alternative many ways to p-hack
- This paper derives tests that
 - > Control Type I error over the entire (or mildly restricted) null set
 - More powerful vs. wider range of alternatives relative to existing tests

One study (absent selection)

Consider study s: $X_{s,1}, ..., X_{s,n_s} \sim \text{i.i.d. } \mathcal{N}(\mu_s, \sigma_s^2)$, σ_s is known

Researchers are testing

 $H_0: E[X_s] = 0$ against $H_1: E[X_s] \neq 0$.

• *t*-statistic

$$T_{s} = \frac{\sqrt{n_{s}}\bar{X}_{s}}{\sigma_{s}} = \frac{\sqrt{n_{s}}\mu_{s}}{\sigma_{s}} + \frac{\sqrt{n_{s}}(\bar{X}_{s} - \mu_{s})}{\sigma_{s}} = \underbrace{h_{s}}_{\text{(local) alternative/effect}} + \underbrace{W_{s}}_{\sim \mathcal{N}(0,1)}$$

• What is the power at significance level p?

$$\beta(p, h_s) = \Pr(|T_s| > \operatorname{cv}(p) \mid h_s) = \Pr(p_s \le p \mid h_s)$$

= 2 - \Phi(\mathbf{cv}(p) - h_s) - \Phi(\mathbf{cv}(p) + h_s) \leftarrow known function

• Immediate generalization to testing problems with *limiting normal experiments* (asy. *t*-tests)

Literature (absent selection)

Treat *h* as random: $h \sim \Pi \Rightarrow$ Distribution of p_s : $G_0(p) = \int \beta(p, h) d\Pi(h)$

The *p*-curve shape depends on the *distribution of effects in the literature*

• or the implied distribution of power

$$\mathcal{G}_0 := \left\{ G_0 \mid G_0(p) = \int_{\mathbb{R}} \beta(p,h) d\Pi(h), \quad \Pi \in \{\text{all probability distributions}\} \right\}$$

No selective reporting: $H_0: \ G \in \mathcal{G}_0$

$$\mathcal{G}_0 := \left\{ G_0 \mid G_0(p) = \int_{\mathbb{R}} \beta(p, h) d\Pi(h), \quad \Pi \in \{\text{all probability distributions}\} \right\}$$

No selective reporting: $H_0: G \in \mathcal{G}_0$

Existing Tests: testable implications $\mathcal{G}_0 \subset \mathcal{G}_*$:

- Continuity
- (Complete) Monotonicity
- Bounds

New (More Powerful) Tests

Non-parametric step - requires regularization (Kernel Deconvolution)

New (More Powerful) Tests

Convenient to bypass estimation of Π and focus on $G_0(\Pi)$

New (More Powerful) Tests

- Kolmogorov-Smirnov (KS) distance: $T_{\infty} := \left| \left| \widehat{G} \widetilde{G} \right| \right|_{\infty}$
- Distance between histograms: $\widehat{G}(x_1) \widetilde{G}(x_1), \dots, \widehat{G}(x_J) \widetilde{G}(x_J)$

Alternative: Which Distributions indicate Selective Reporting?

Both! Each contains $100 \times \tau$ % of results reported selectively. (Here $\tau = 0.5$)

- Thresholding and Minimum approaches
- *p*-hacking "slow" and "fast" (Data Colada terminology)
- Generate very different distributions

Power Improvements

- DGPs tailored to existing dataset of published results
- Two types of *p*-hacking as before
- Sample size 1000

Power Improvements

- DGPs tailored to existing dataset of published results
- Two types of *p*-hacking as before
- Sample size 1000

Additionally, provide a lower bound estimate on τ