The Strength of Evidence from Statistical Significance and *P*-values

Daniel J. Benjamin

Center for Economic and Social Research,
Behavioral and Health Genomics Center, and Economics Department
University of Southern California

Related Papers

Bayarri, M.J., Daniel J. Benjamin, James O. Berger, and Thomas M. Sellke (2016). "Rejection Odds and Rejection Ratios: A Proposal for Statistical Practice in Testing Hypotheses." *Journal of Mathematical Psychology*, 72: 90-103. Invited paper for special issue on "Bayesian hypothesis testing."

Benjamin, Daniel J., and James O. Berger (2016). "Comment: A simple alternative to p-values." *The American Statistician*. Invited comment on "The American Statistical Association Statement on Statistical Significance and p-values."

Benjamin, Daniel J., et al. (2017). "Redefine Statistical Significance." Forthcoming, *Nature Human Behaviour*.

Common Practice: Heuristic-Based

- Reject $H \downarrow 0$ if $P < \alpha \equiv 0.05$.
 - Treat such findings as providing strong evidence for a true effect.
- Often, ignore power (except for when required for grant proposals).
- When do power calculations, aim for sample size N that gives power of 0.80.
- (In talk, will remain within paradigm of null hypothesis significance testing.)

Setup

- Test $H \downarrow 0$: $\theta = 0$ versus $H \downarrow 1$: $\theta = \theta \downarrow 1$.
 - For simplicity, consider one-sided test.
- Test statistic t.
- P-value at $t \downarrow obs$ is $P \equiv \Pr(t > t \downarrow obs \mid H \downarrow 0)$.
- Significance threshold $\alpha \equiv \Pr t > t \downarrow crit H \downarrow 0$.
 - Implicitly defines $t \downarrow crit$.
 - Type I error rate = $Pr(P < \alpha | H \downarrow 0) = \alpha$.
- Power $\equiv \Pr t > t \downarrow crit H \downarrow 1 = \Pr(P < \alpha | H \downarrow 1)$.
 - Determined by α and sample size N.

Pre-Experimental Odds

(based on Wacholder et al., 2004; Ioannidis, 2005; Benjamin et al., 2012; Maniadis, Tufano, and List, 2014; Bayarri et al., 2016)

Fix α . If result is statistically significant, what are the odds of $H \downarrow 1$ relative to $H \downarrow 0$?

 $Pr(H \downarrow 1 \mid P < \alpha)$

=Pr($P < \alpha | H \downarrow 1$)Pr($H \downarrow 1$)/Pr($P < \alpha | H \downarrow 1$)Pr($H \downarrow 1$)Pr($H \downarrow 1$)+Pr($P < \alpha | H \downarrow 0$)Pr($H \downarrow 0$).

 $Pr(H \downarrow 0 \mid P < \alpha)$

=Pr($P < \alpha | H \downarrow 0$)Pr($H \downarrow 0$)/Pr($P < \alpha | H \downarrow 1$)Pr($H \downarrow 1$)Pr($H \downarrow 1$)+Pr($P < \alpha | H \downarrow 0$)Pr($H \downarrow 0$).

Pre-Experimental Odds

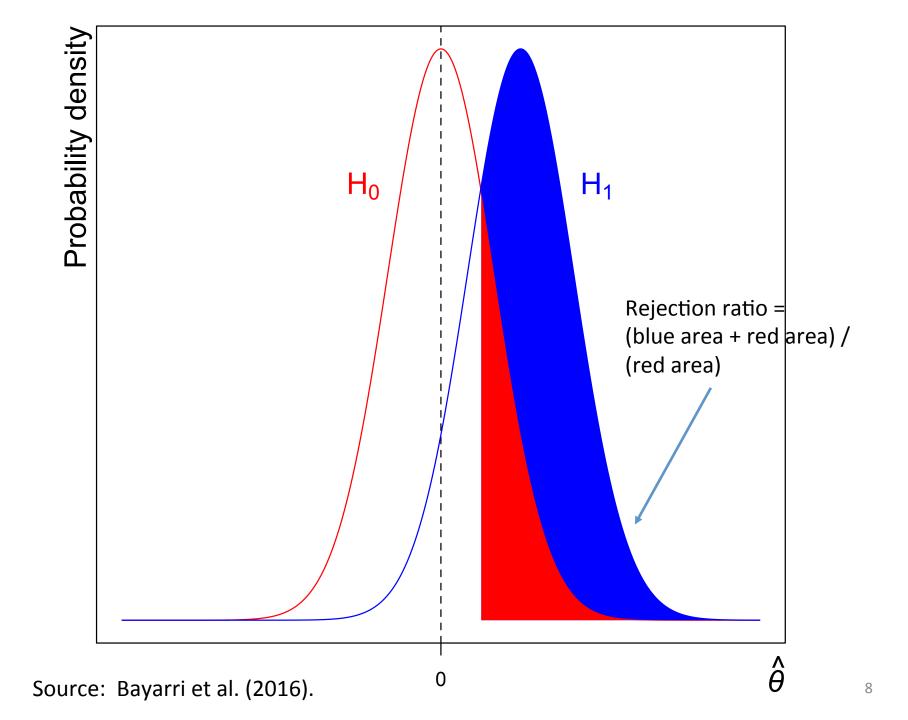
(based on Wacholder et al., 2004; Ioannidis, 2005; Benjamin et al., 2012; Maniadis, Tufano, and List, 2014; Bayarri et al., 2016)

Fix α . If result is statistically significant, what are the odds of $H \downarrow 1$ relative to $H \downarrow 0$?

$$Pr(H \downarrow 1 \mid P < \alpha) / Pr(H \downarrow 0 \mid P < \alpha) = Pr(P < \alpha \mid H \downarrow 1) / Pr(P < \alpha \mid H \downarrow 0) Pr(H \downarrow 1) / Pr(H \downarrow 0).$$

Posterior ratio = "Rejection ratio" × Prior ratio

Rejection ratio $\equiv power/\alpha$ is strength of evidence from statistical significance.



What's the Prior Odds?

- Of course, varies by context.
- Some evidence indicates ~1:10 (on average) for psychology:
 - Analysis of results from OSC (2015) replication project. (Johnson et al., 2016)
 - Prediction market about outcomes of the OSC replication project. (Dreber et al., 2015)
- Results from experimental economics replication project suggest more like ~1:5 (on average) for experimental economics. (Camerer et al., 2016)

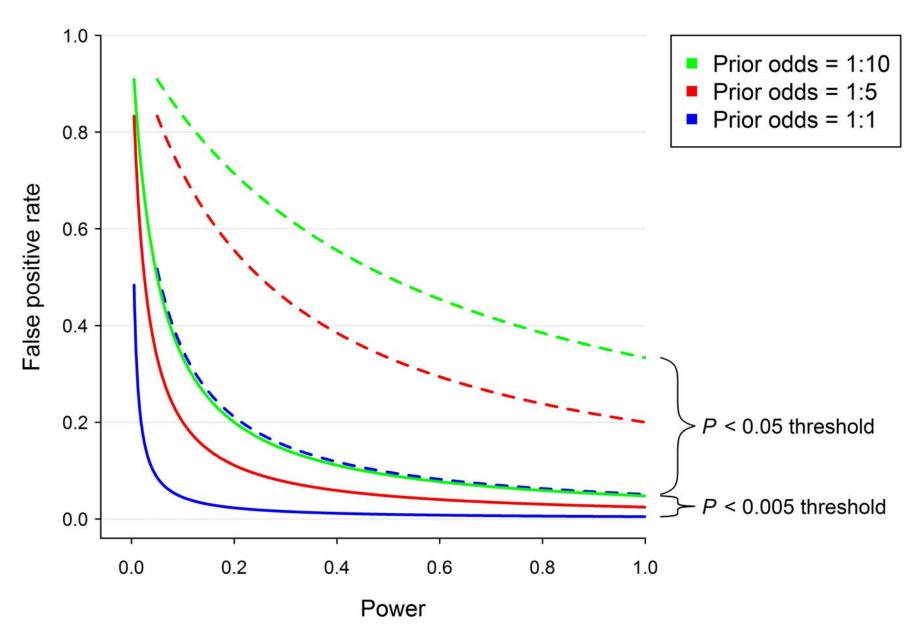
Application: Simple Experiment

- Treatment and control group, each with sample size N.
- Effect size r = 0.21, "typical" according to meta-analysis of studies in social psychology. (Richard, Bond, and Stoke-Zoota, 2003)

Per-condition N	10	20	30	40	50
Power	0.12	0.16	0.20	0.24	0.28
Rejection ratio	2.4	3.3	4.1	4.8	5.5

Per-condition N	100	150	200	250	280
Power	0.44	0.57	0.68	0.76	0.80
Rejection ratio	8.7	11.4	13.5	15.2	16.0

Source: Bayarri et al. (2016).



Source: Adapted from Benjamin et al. (2017). False positive rate $\equiv \Pr(P < \alpha \& H \downarrow 0) / \Pr(P < \alpha)$.

Some Implications

- 1. Power matters for strength of evidence implied by statistical significance.
 - Common fallacies:
 - Power no longer matters once you've run the experiment.
 - If significant despite low power, even more convincing(!).
 - Other problems with low power: (Gelman and Carlin, 2014)
 - increases probability of wrong sign.
 - increases expected exaggeration of estimated effect size.
- 2. If prior odds are low, need lower α .
 - Rejection ratio is bounded above by $1/\alpha$ (since power is bounded above by 1).

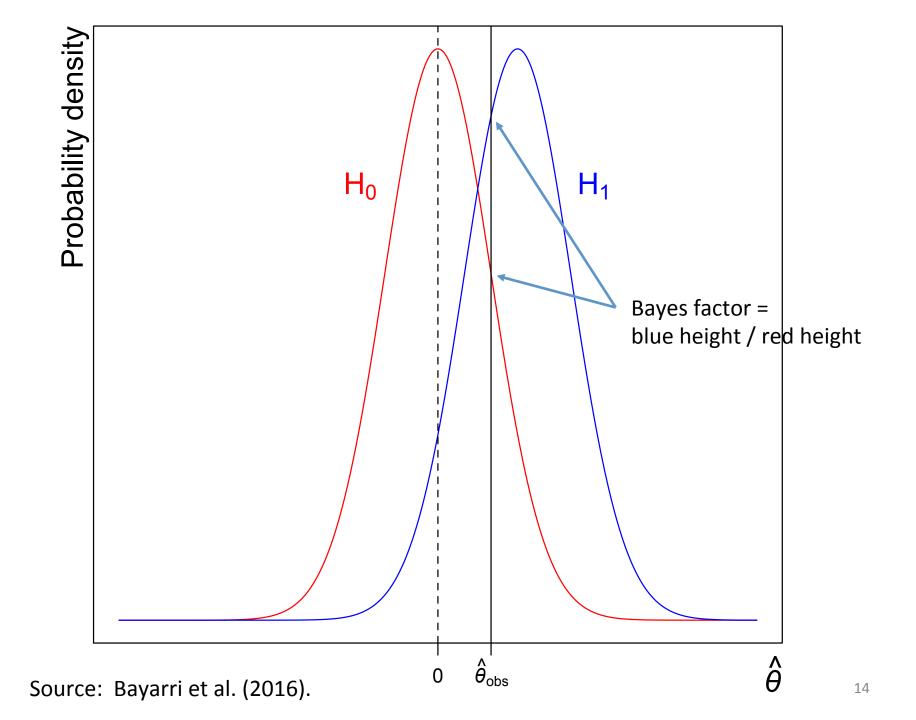
Post-Experimental Odds (Bayes Factors)

If result has P-value $P \downarrow obs$, what are the odds of $H \downarrow 1$ relative to $H \downarrow 0$?

$$\Pr(H\downarrow 1 \mid P=P\downarrow obs)/\Pr(H\downarrow 0 \mid P=P\downarrow obs) = f(P=P\downarrow obs \mid H\downarrow 1)/\Pr(P=P\downarrow obs \mid H\downarrow 0)$$
 $\Pr(H\downarrow 1)/\Pr(P=P\downarrow obs \mid H\downarrow 0)$.

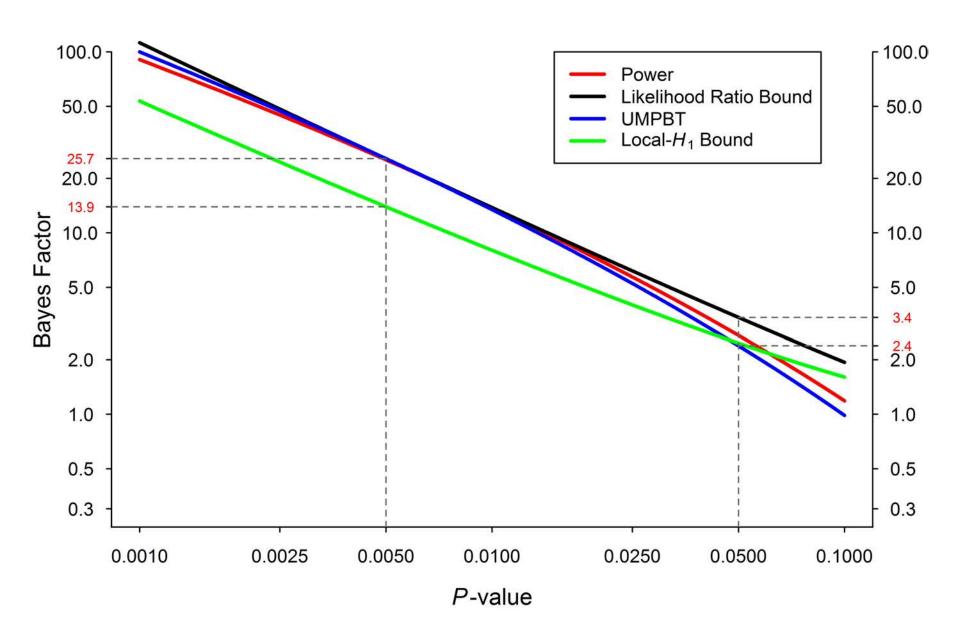
Posterior ratio = Bayes factor × Prior ratio

Bayes factor is the strength of evidence from the observed data.



P-value \longleftrightarrow Bayes factor ?

- Calculating P-value only requires specifying $H \downarrow 0$, but BF requires specifying $H \downarrow 0$ and $H \downarrow 1$.
- But often, $H \downarrow 1$ is not specified.
- Can obtain a correspondence (or bound) under some generic assumptions about $H \downarrow 1$.
- For example, consider a draw of a sample mean, $x \sim N(\theta,1)$, with $H \downarrow 0$: $\theta = 0$.
- Every $P=P \downarrow obs \rightarrow x=x \downarrow obs$.
- Setting $H \downarrow 1$: $\theta = x \downarrow obs$ gives an upper bound for BF. (Edwards, Lindman, and Savage, 1963)



Source: Benjamin et al. (2017).

Some Implications

- 1. Calculations illustrate the fact that knowing that P=0.05 is *much* weaker evidence than knowing that P<0.05.
 - In general, Bayes factor for $P=\alpha$ is smaller than rejection ratio for $P<\alpha$ (for any level of power). (Proved in Bayarri et al., 2016)
 - Intuitively, P<0.05 includes many (much more convincing!) P-values smaller than 0.05.
 - Report $P=P \downarrow obs$, not $P<\alpha$ and definitely not P< $P \downarrow obs + \varepsilon$.
- 2. P=0.05 is actually pretty weak evidence: roughly 3:1 odds of $H\downarrow 1$ versus $H\downarrow 0$.

Suggestions For Reproducible Research

- Pre-experimental design:
 - Consider whether prior odds warrant lower significance threshold.
 - Under realistic anticipated effect size, calculate power (really!) and report it.
- Post-experimental evaluation of evidence:
 - Using (ex ante) anticipated effect size for $H \downarrow 1$, calculate Bayes factor.
 - If can't, then calculate Bayes factor implied by the evidence under a range of assumptions about $H \downarrow 1$.
 - Evaluate $H \downarrow 1$ in light of Bayes factor and plausible prior odds.
- Pre-register prior odds, significance threshold, anticipated effect size, and power calculations.