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“Doing empirical research is like making sausage. Doing meta-analysis is
like using sausage to make sausage”

This is true. But it is not a reason to punt on meta-analysis.

(1) Complicated things always look like making sausage until you
understand how to do it. But complexity is not a reason to not do
something important.

E.g. Most people think all of statistics (or academic research generally)
looks like making sausage.
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(2) Lots of people eat lots of sausage. Somebody has to look out for
them. If we don’t make safe sausage, somebody else will make crappy
sausage and feed it to all those hungry people.



Sausage, Italian,
Pork, Cooked

italian sausage, meat, sausage, dinner,
pork

C- 286

Nutrition Facts

Serving Size 1 link, 4/1b (83 g)

Per Serving % Dally Value*
Calories 286
Calories from Fat 204
Total Fat 22.7g 35%
Saturated Fat 7.9g 40%

Polyunsaturated Fat2.7g
Monounsaturated Fat 8.9g

Cholesterol 47mg 16%
Sodium 1002mg 42%
Potassium 252.32mq 7%
Carbohydrates 3.5g 1%
Dietary Fiber 0.1g 0%
Sugars0.7g

Protein 15.9g

Vitamin A 1% - Vitamin G 0%
Calcium 2% - Iron 7%

(3) Sausage contains lots of good stuff! It's a waste to throw out
tidbits of research just because they aren’t the filet mignon. The public
should at least get to use all of the research that it paid for.



Why do research?

The objective of research is to learn about the world.

Settling armchair debates requires only that somebody is right and
somebody is wrong (i.e. hypothesis tests).

Designing welfare-improving public policy requires that we know what we

know and that our quantitative values are right (or as good as we can get
them).
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Why do research?

The objective of research is to learn about the world.

Settling armchair debates requires only that somebody is right and
somebody is wrong (i.e. hypothesis tests).

Designing welfare-improving public policy requires that we know what we
know and that our quantitative values are right (or as good as we can get
them).

Knowledge accumulates study by study.

Our collective knowledge is some composite of prior studies.

By formalizing how we combine information from studies, we can be clear
and precise about what we mean by knowledge and our grasp of it.
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Example: Does anchoring affect valuation?
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Probably. List et al. should not have claimed to refute Ariely et al.
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Example: Does anchoring affect valuation?
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(Ariely, Loewenstein & Prelec 2003) (Maniadis, Tufano & List 2014)

Probably. List et al. should not have claimed to refute Ariely et al.
But what is the best estimate, now that we have more information?
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Example: Does anchoring affect valuation?

But what is the best estimate, now that we have more information?
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Did you use a cell phone, computer, or light bulb today?



Setting the bar

Did you use a cell phone, computer, or light bulb today?

Physical and
Chemical
Reference Data

Thermal Conductivity
of the Elements:
A Comprehensive Review

for Bt Oy

Published by the American Chemical Society
and the American Institute of Physics for
the National Bureau of Standards
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Setting the bar
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Setting the bar
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Warming increases the risk of civil war in Africa

Burke, Miguel, et al. (PNAS, 2009)
Temperature variables are strongly related to conflict incidence over
our historical panel, with a 1 C increase in temperature in our preferred
specification leading to a 4.5% increase in civil war in the same year
and a 0.9% increase in conflict incidence in the next year.



Warming increases the risk of civil war in Africa
Burke, Miguel, et al. (PNAS, 2009)

Temperature variables are strongly related to conflict incidence over
our historical panel, with a 1 C increase in temperature in our preferred
specification leading to a 4.5% increase in civil war in the same year
and a 0.9% increase in conflict incidence in the next year.

Climate not to blame for African civil conflict
Buhaug (PNAS, 2010)

Scientific claims about a robust correlational link between climate
variability and civil war do not hold up to closer inspection.... The
challenges imposed by future global warming are too daunting to let
the debate on social effects and required countermeasures be
sidetracked by atypical, nonrobust scientific findings and actors with
vested interests.



Warming increases the risk of civil war in Africa
Burke, Miguel, et al. (PNAS, 2009)

Temperature variables are strongly related to conflict incidence over
our historical panel, with a 1 C increase in temperature in our preferred
specification leading to a 4.5% increase in civil war in the same year
and a 0.9% increase in conflict incidence in the next year.

Climate not to blame for African civil conflict
Buhaug (PNAS, 2010)

Scientific claims about a robust correlational link between climate
variability and civil war do not hold up to closer inspection.

Reconciling disagreement over climate-conflict results in Africa
Hsiang & Meng (PNAS, 2014)

We reexamine this apparent disagreement by comparing the statistical
models from the two papers using formal tests. When we implement
the correct statistical procedure, we find that the evidence presented in
the second paper is actually consistent with that of the first.



“Non-robust sign and magnitude” using different outcome variables

Table 2. Alternative measures of civil war

Model 5: Model 6: Model 7: Model 8: Model 9:
incidence 1,000+ outbreak 1,000+ incidence 25+ outbreak 25+ outbreak 100+
Temperature —0.006 —0.005 0.015 —0.009 0.016
(0.021) 0.013) (0.040) (0.026) (0.024)
Temperature,_4 —-0.025 —0.009 —0.031 —0.004 -0.018
(0.028) (0.015) (0.032) (0.026) (0.017)
Precipitation 0.062 -0.012 0.129* 0.055 -0.014
(0.061) (0.052) (0.072) (0.068) (0.074)
Precipitation;_, 0.056 0.003 0.024 0.018 -0.010
(0.062) (0.035) (0.069) (0.071) (0.060)
Intercept 0.358 0.448 -0.112 0.214 0.138
(1.231) (0.531) (1.521) (0.891) 0.911)
Country fixed effects Yes Yes Yes Yes Yes
Country time trends Yes Yes Yes Yes Yes
R? 0.76 0.09 0.65 0.13 0.10
Civil war observations 169 11 226 46 23
Observations 889 889 889 889 769

Data are OLS regression estimates with country fixed effects and country-specific linear time trends; SEs are in parentheses. Models

5-8 apply different operationalizations of civil war from the same conflict database (11); model 9 uses civil war data from an
alternative source (12).

**P < 0.05, *P < 0.1.

Buhaug (PNAS, 2010)
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Units must be standardized, differences must be tested

Table 2. Testing for disagreement between results when alternative conflict variables are used

Burke et al. (1)

Buhaug (8) model 5 Buhaug model 6 Buhaug model 7 Buhaug model 8 Buhaug model 9

war years 1000+ incidence 1000+ outbreak 1000+ incidence 25+ outbreak 25+ outbreak 100+
(standardized) (standardized) (standardized) (standardized) (standardized) (standardized)
Probability of occurrence 0.110 0.190 0.012 0.254 0.052 0.030
Temperature, 0.390 —-0.030 —0.408 0.060 —-0.165 0.532
(0.197) (0.110) (1.046) (0.156) (0.504) (0.790)
Temperature;_; 0.120 —-0.130 —-0.755 —-0.121 —-0.083 —-0.598
(0.211) (0.147) (1.233) (0.128) (0.505) (0.581)
Precipitation, -0.209 0.326 —-1.001 0.508 1.065 —0.455
(0.471) (0.318) 4.212) (0.281) (1.316) (2.465)
Precipitation,_; 0.227 0.296 0.205 0.093 0.352 -0.321
(0.443) (0.324) (2.847) (0.271) (1.370) (2.017)
Observations 889 889 889 889 889 769
R-squared 0.657 0.765 0.090 0.652 0.130 0.099
Testing Whether Coefficients Differ from Burke et al. using SUR (P value)
Temperature; 0.0558 0.4388 0.1299 0.2638 0.8558
Tempy, temp,_; 0.1392 0.4563 0.1598 0.4276 0.3700
All four variables 0.1290 0.2843 0.1453 0.4429 0.4333

This table replicates Buhaug table 2. All regressions contain country fixed effects and country-specific trends with standard errors clustered by country,
shown in parentheses. The unconditional probability of occurrence is shown and is used to standardized each conflict outcome. For regression coefficients
shown, a 0.1 effect implies a 10% change relative to average risk levels. We estimate Buhaug models 5-9 simultaneously with the Burke et al. model using

seemingly unrelated regression (SUR) to test a null hypothesis that coefficients from the two models are the same in bottom panel.

Hsiang & Meng (PNAS, 2014)
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Table 3. Alternative climate parameters and controls

Model 10:
outbreak 25+

Model 11:
outbreak 25+

Model 12:
outbreak 25+

Model 13:
outbreak 25+

Temperature deviation

Temperature deviation,_;

Precipitation deviation

Precipitation deviation;_,

Political exclusion,_4

Temperature deviation x political exclusion,_q
Ln GDP capita;_q

Temperature deviation x In GDP capita;_;
Post-Cold War

Intrastate conflict;_,

Intercept

Pseudo R?

Civil war observations
Observations

-3.917
(10.146)
3.112
(12.635)
-0.238
(0.519)
-0.792
(1.674)
0.760*
(0.409)

—0.482**
(0.236)

-12.631
(12.144)
-6.180
(11.517)
0.509
(0.578)
—-0.169
(0.915)
0.820**
(0.396)

—0.547**
(0.263)

-18.977
(12.899)

0.774*
(0.399)
11.519
(12.382)
—0.532**
(0.243)

-130.35
(113.69)

Data are logit regression estimates; robust SEs clustered on countries in parentheses. The climate parameters measure deviation
from previous year’s estimate (model 10) and deviation from the long-tem normal annual level (models 11-13). Ln indicates natural

logarithm of values.
**P < 0.05 *P < 0.1.

Buhaug (PNAS, 2010)



Models must be apples to apples

Convert logic and linear probability models to a common metric:
relative risk ratios

Table 3. Relative risk ratio from +1 °C

Burke et al. (1) implied  Buhaug (8) model 10  Buhaug model 11 Buhaug model 12

Buhaug model 13
war years 1000+ outbreak 25+ outbreak 25+ outbreak 25+ outbreak 25+
Upper bound effect (95% Cl) 8.62x 108 7.10% 10* 546.9 1.45x 104
Average effect of temperature 1.39 0.0199 3.27x10°¢ 5.73x10-° 2.46x10°%7
Lower bound effect (95% Cl) 460x10°" 1.51x107'® 6.01x10°2 420x1071%4

This table replicates Buhaug table 3. Estimates are relative risk ratios from +1 °C. Models described in Buhaug. Cl, confidence interval.

(Hsiang & Meng, PNAS, 2014)
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Modern climate and violence in Africa
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Modern climate and violence in Africa

Sub-Saharan Africa Global Tropics
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Modern climate and violence in Africa
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Modern climate and violence in Africa

Tanzanian villages 2 East Africa Sub-Saharan Africa Global Tropics
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Modern climate and violence in Africa

Tanzanian villages 2 East Africa Sub-Saharan Africa Global Tropics
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When can we compare or consolidate results?

(]

Must have (reasonably) comparable units.

©

Units of measure must be comparable (e.g. standardized to %).

o Models must be structurally similar enough for comparison (e.g. local
linearization).

©

Methods should not have systematic bias relative to one another.

o Must have limited publication bias.
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When can we compare or consolidate results?

(]

Must have (reasonably) comparable units.

©

Units of measure must be comparable (e.g. standardized to %).

o Models must be structurally similar enough for comparison (e.g. local
linearization).

©

Methods should not have systematic bias relative to one another.

o Must have limited publication bias.

Many times comparisons are a bad idea.

But sometimes they are essential (e.g. policy design) and should be done
carefully and thoughtfully.

Solomon Hsiang Cc ing and c lidating empirical findings




Replications with same effect and same error structure

Obs. i in multiple experiments indexed by j, with outcome variable y:

yij ~ N(8,0)

where estimates are

=1y, =T
J n & I J nj
1



Replications with same effect and same error structure

Obs. i in multiple experiments indexed by j, with outcome variable y:

yij ~ N(8,0)

where estimates are
A 1 2 O
= " E Yij =
1

If experiments only differ by sample size n; (i.e. o2 and 3 are the same for
all j), then we should pool observations into one mega-experiment:
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Replications with same effect and same error structure

Obs. i in multiple experiments indexed by j, with outcome variable y:

yij ~ N(8,0)

where estimates are
A 1 2 O
= " E Yij =
1

If experiments only differ by sample size n; (i.e. o2 and 3 are the same for
all j), then we should pool observations into one mega-experiment:

2. %3 _ Z%Bj _ Ej”ij
ijz Zj Uﬁ Ej Ij

% is called the precision of ﬁAj.

J
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Replications with same effect but different error structure

Obs. i in multiple experiments indexed by j, with outcome variable y:

yij ~ N(B,07)

We look for a weighted average of prior estimates:
B=> wb;
J
where wj is the weight for study ;.
Var(BN) = Z Z [kaJCOV(Bk, BJ)]
ko
If the studies are independent, then Cov(ﬁk7 31) =0 for all k # j and

Var () = Z wf(sz
J



Replications with same effect but different error structure

Obs. i in multiple experiments indexed by j, with outcome variable y:

yij ~ N(B,07)

We look for a weighted average of prior estimates:
B=> wb;
J
where wj is the weight for study ;.
Var(BN) = Z Z [kaJCOV(Bk, BJ)]
ko
If the studies are independent, then Cov(ﬁk7 31) =0 for all k # j and

Var () = Z wf(sz
J

A reasonable goal: Minimize Var(5) subject to the constraint > w; = 1.



Problem: 02 = 1,03 =3
2

= w? + 3w}

Minimize: Var(B) = w%cﬁz + w%cfg
Subject to: w1 +wy = 1.




Problem: 02 = 1,02 =3
Minimize: Var(3) = wid1? + w3d>?
Subject to: w1 +wy = 1.

= w? + 3w}




Problem: 02 = 1,02 =3

Minimize: Var(§) = w?d1? + wid2? = w? + 3w3

Subject to: wy + wy = 1.

W // /

l




Solution: isi i I




Precision weights are a simple and general solution

The combined estimate

522%@', wj = =~
- .

is optimal if effects are the same across studies, regardless of whether or
not error structure is the same across studies.

When do error structures change across studies?
- More orthogonal controls reduce residual variance
- Populations are subject to different disturbances

- Observational units are aggregated differently across samples
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Inter-group conflict and climate
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Going beyond the mean

A natural extension is to combine the full probability distribution for
effects (rather than just the mean):

Bs = wiNs(5;,6))

J

esimak s from sach study precision-weighted total distibution

Rl 0 [ 50 T 50 700
elfect [3¢Isigms) effect (safsigma)
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Summarizing results for climate and conflict

Table: Summary statistics for the distribution of effects across studies

Median é o(B)

Percentiles of B
5% 25% 50%  75%  95%

Intergroup 1356 | 11.12
Interpersonal 3.89 2.29

-4.60 5.80 10.20 14.30 32.00
120 150 220 260 4.00

Hsiang, Burke, Miguel (Science, 2013)
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Sometimes cross-study differences seem inconsistent with
previously estimated within-study sampling variability

Estimated Standard error

treatment of effect
School  effect, y; estimate, o;
A 28 15
B 8 10
C -3 16
D 7 11
E -1 9
F 1 11
G 18 10
H 12 18

Table 5.2 Observed effects of special preparation on SAT-V scores in eight random-
ized experiments. Estimates are based on separate analyses for the eight experiments.
From Rubin (1981).

Precision-weighted § = 7.9 (£4.2)



Hierarchical (random effects) model of research findings

Observations i in experiment j

yij ~ N(Bj,0°)

Which let's us estimate Bj for each study. The true 3;'s for the studies are
not the same, but have a distribution:

Bj ~ N(M» 7_2)

w and 7 are called hyperparameters, they have an unknown (possibly
non-normal) distribution.

Interpretation

Studies really do differ in substantive ways unrelated to sampling
variability in y;;, however some component of their results is common
across studies ().

T describes the extent to which studies describe fundamentally different
results.



The conditional posterior

Bilu, T,y ~ N(Bj, V)

where LA
. 51551"‘?2/‘ y 1
51'— 11 J = 1,1
E &



Bayesian solution

The conditional posterior

Bj‘ﬂvﬂy ~ N(BJ’ VJ)

where

N

2
J

_|_
Bj: A1+

M‘I—l *\N‘,_.

Common component of studies is

H|T7y ~ N(laa VM)

where
E 1
p= ,
Z : zJ: + 2

Li
32 T2

J

>
\\q,\)‘ =
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Median = 13.6%
Mean = 11.1%
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Predicting true study-specific effects 3; conditional on
hyperparameter 7

Interpersonal violence Intergroup conflict
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Publication bias is always a major issue — check with tests
like p-curves
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Pinning down numbers informs policy!

Standardized temperature change by 2050:
Most inhabited areas warm 2-4¢

Standard deviations

o 1 2 3 a4

Median temperature effects:

+3.9%/0 for interpersonal conflict
+13.6%/0 for intergroup conflict




Can we consolidate and unify all quantitative human
knowledge in real time?

Solution: Crowd-sourcing empirical results from the researchers that
produce them (think Wikipedia for empirical findings).

“Distributed Meta-Analysis System”
Rising & Hsiang (2014)

dmas.berkeley.edu
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