False-Positives, p-Hacking, Statistical Power, and Evidential Value

Leif D. Nelson University of California, Berkeley Haas School of Business

> Summer Institute June 2014

Who am I?

- Experimental psychologist who studies judgment and decision making.
 - And has interests in methodological issues

Who are you? [not a rhetorical question]

- Grad Student vs. Post-Doc vs. Faculty?
- Psychology vs. Economics vs. Other?
- Have you read any papers that I have written?
 Really? Which ones?

Things I want you to get out of this

- It is quite easy to get a false-positive finding through p-hacking. (5%)
- Transparent reporting is critical to improving scientific value. (5%)
- It is (very) hard to know how to correctly power studies, but there is no such thing as overpowering. (30%)
- You can learn a lot from a few p-values. (remainder %)

This will be most helpful to you if you ask questions.

A discussion will be more interesting than a lecture.

SLIDES ABOUT P-HACKING

False-Positives are Easy

- It is common practice in all sciences to report less than everything.
 - So people only report the good stuff. We call this *p*-Hacking.
 - Accordingly, what we see is too "good" to be true.
 - We identify six ways in which people do that.

Six Ways to p-Hack

- 1. Stop collecting data once *p*<.05
- 2. Analyze many measures, but report only those with *p*<.05.
- 3. Collect and analyze many conditions, but only report those with *p*<.05.
- 4. Use covariates to get *p*<.05.
- 5. Exclude participants to get *p*<.05.
- 6. Transform the data to get *p*<.05.

OK, but does that matter very much?

- As a field we have agreed on *p*<.05. (i.e., a 5% false positive rate).
- If we allow p-hacking, then that false positive rate is actually 61%.
- Conclusion: p-hacking is a potential catastrophe to scientific inference.

• Instead of reporting only the good stuff, just report all the stuff.

- Solution 1:
 - 1. Report sample size determination.
 - 2. N>20 [note: I will tell you later about how this number is insanely low. Sorry. Our mistake.]
 - 3. List all of your measures.
 - 4. List all of your conditions.
 - 5. If excluding, report without exclusion as well.
 - 6. If covariates, report without.

• Solution 2:

Disclosure reduces selective reporting and enables transparency in intentions and analysis.

B Preregistration Transparency in intentions			C Open data and materials Transparency in analysis			
Reported without	Reported with		Summer break	Grades	Truancy	SAT score
Outcome(s):	Primary outcome:		Short	2.95	2%	1020
Grades. <i>n.s.</i>	Grades. <i>n.s.</i>		Short	3.30	0%	1360
Truancy, <i>n.s.</i> SAT score, <i>P</i> < 0.05	Other outcomes:		Long	2.32	4%	(9.80)?
	Truancy <i>n.s.</i> SAT score, <i>P</i> < 0.05		Long	3.87	0%	1450
Preregistration differentiates hypothesis testing from exploratory research.			Open data reduce errors and fraud and facilitate replication and extension.			

Three mechanisms for increasing transparency in scientific reporting. Demonstrated with a research question: "Do shorter summer breaks improve educational outcomes?" n.s. denotes P > 0.05.

- Implications:
 - Exploration is necessary; therefore replication is as well.
 - Without p-hacking, fewer significant findings; therefore fewer papers.
 - Without p-hacking, need more power; therefore more participants.

SLIDES ABOUT POWER

Motivation

• With *p*-hacking,

- statistical power is irrelevant, most studies work

- Without *p*-hacking.
 - take power seriously, or most studies fail
- Reminder. Power analysis:
 - Guess effect size (d)
 - Set sample size (n)
- Our question: Can we make guessing *d* easier?
- Our answer: No
- Power analysis is not a practical way to take power seriously

How to guess d?

• Prior literature

• Theory/gut

Some kind words before the bashing

- Pilots: They are good for:
 - Do participants get it?
 - Ceiling effects?
 - Smooth procedure?
- Kind words end here.

Pilots: useless to set sample size

- Say Pilot: n=20
 - $-\hat{d} = .2$ $-\hat{d} = .5$ $-\hat{d} = .8$

• In words

- Estimates of *d* have too much sampling error.

• In more interesting words

– Next.

Think of it this way

Say in actuality you need *n*=75 Run Pilot: n=20 What will Pilot say you need?

- Pilot 1: "you need *n*=832"
- Pilot 2: "you need *n*=53"
- Pilot 3: "you need *n*=96"
- Pilot 4: "you need *n*=48"
- Pilot 5: "you need *n*=196"
- Pilot 6: "you need *n*=**1**0"
- Pilot 7: "you need *n*=311"

Thanks Pilot!

n=20 is not enough.

How many subjects do you need

to know

how many subjects you need?

Need a Pilot with... n=133

Need a Pilot with... n=276

"Theorem" 1

Need: 5n

How to guess d?

- Pilot
- Existing findings
- Theory/gut

Existing findings

- One hand
 - Larger samples
- Other hand
 - Publication bias
 - More noise
 - \neq sample
 - \neq design
 - \neq measures

Best (im)possible case scenario

• Would guessing d be reasonable based on other studies?

"Many Labs" Replication Project

- Klein et al.,
- 36 labs
- 12 countries
- N=6344
- Same 13 experiments

Open Science Framework BETA Explore - Help -

Create an Account or Sign-In

Watch 5

Public

Investigating variation in replicability: The "Many Labs" Replication Project

Search

Contributors: Richard A. Klein, Kate Ratliff, Brian A. Nosek, Michelangelo Vianello, Ronaldo Pilati, Thierry Devos, Elisa Maria Galliani, Mark Brandt, Anna van 't Veer, Abraham M. Rutchick, Kathleen Schmidt, Stepan Bahnik, Marek Vranka, Hans IJzerman, Fred Hasselman, Jennifer Joy-Gaba, Jesse J. Chandler, Leigh Ann Vaughn, Claudia Brumbaugh, Lyn va swol, Aaron Wichman, Grant Packard, Beach Brooks, Zeynep Cemalcilar, Justin Storbeck, Konrad Bocian, Carmel Levitan, Michael Jason Bernstein, Lacy Elise Krueger, Matthew Eisner, William E. Davis, Jason A. Nier, Anthony J. Nelson, Troy G. Steiner, Robyn Mallett, Donna Thompson, Jeffrey R. Huntsinger, Wendy Morris, Jeanine Skorinko, Heather Kappes

Date Created: 6/14/2013 3:29 PM | Last Updated: 12/20/2013 2:28 PM

Description: We conducted replications of 13 effects in psychological science with 36 samples and more than 6000 participants. We examined heterogeneity in replicability across sample and setting.

If 5 identical studies already done

- Best guess: n=85
- How sure are you?

Best case scenario gives range 3:1

Reality is massively worse

- Nobody runs 6th <u>identical</u> study.
 - Moderator: Fluency
 - Mediator: Perceived-norms
 - DV: 'Real' behavior
- Publication bias

Where to get *d* from?

- Pilot
- Existing findings
- Theory/gut

Say you think/feel d~.4

- d=.44 ~ .4 →n=83
- d=.35, ~ .4
- →n=130

Rounding error \rightarrow 100 more participants

Transition (key) slide

- Guessing d is completely impractical
 → Power analysis is also.
- Step back: Problem with underpowering?
- Unclear what failure means.
- Well, when you put it that way:
 Let's power so that we know what failure means.

Existing view

- 1. Goal: Success
- 2. Guess d

New View

1. Goal: Learn from results

2. Accept d is unknown

If interesting \rightarrow o possible If o possible \rightarrow very small possible

3. Set n: 100% learning Works: keep going Fails: Go Home

What is "Going *Big"*?

A. Limited resources (most cases)

- (e.g., lab studies)
- What *n* are you *willing to pay* for this effect?
- Run n
 - Fails, too small for me.
 - Works, keep going, adjust n.

B. 'Unlimited' resources (fewest cases)

- (e.g., Project Implicit, Facebook)
- Smallest effect you *care* about
SLIDES ABOUT P-VALUES

Defining Evidential Value

• Statistical significance Single finding: unlikely result of chance

Could be caused by selective reporting rather than chance

• Evidential value

Set of significant findings: unlikely result of selective reporting

Motivation: we only publish if p<.05

ACCENTUATE THE POSITIVE

A literature analysis across disciplines reveals a tendency to publish only 'positive' studies — those that support the tested hypothesis. Psychiatry and psychology are the worst offenders.

Figure 1: From Fanelli, D. Scientometrics 90, 891–904 (2011).

Motivation

Nonexisting effects: only see false-positive evidence **Existing effects:** only see strongest evidence

Published scientific evidence is not representative of reality.

Outline

- Shape
- Inference
- Demonstration
- How often is p-curve wrong?
- Effect size estimation
- Selecting *p*-values

p-curve's shape

• Effect does not exist: flat

• Effect exists: right-skew.

(more lows than highs)

• Intensely p-hacked: left-skew (more highs than lows)

Why flat if null is true?

p-value:

prob(result | null is true).

Under the null:

- What percent of findings p ≤.30
 30%
- What percent of findings p ≤.05
 5%
- What percent of findings p ≤.04
 4%
- What percent of findings p ≤.03
 3%

Got it.

Why more lows than high if true?

(right skew)

- Height: men vs. women
- *N* = Philadelphia
- What result is more likely? *In Philadelphia, men taller than women (p=.*047) (*p=.*007)
 - Not into intuition?

Differential convexity of the density function Wallis (Econometrica, 1942)

Why left skew with *p*-hacking?

- Because *p*-hackers have limited ambition
- *p*=.21
 → Drop if >2.5 SD
- p=.13 \rightarrow Control for gender
- p=.04 \rightarrow Write Intro
- If we stop p-hacking as soon as p<.05,
- Won't get to *p*=.02 very often.

Plotting Expected *P***-curves**

- Two-sample *t*-tests.
- True effect sizes
 d=0, d=.3, d=.6, d=.9
- *p*-hacking
 - No: *n*=20
 - Yes: n={20,25,30,35,40}

Nonexisting effect (n=20, d=0)

As many *p*<.o1 as p>.o4

n=20, *d*=.3 / power=14%

Two p<.o1 for every p>.o4

n=20, *d*=.6 / power = 45%

Five *p*<.o1 per every one *p*>.o4

n=20, *d*=.9 / power=79%

Eigtheen p<.o1 per every *p*>.o4.

Adding *p*-hacking

n={20,25,30,35,40}

d=o

d=.3 / original power=14%

d=.6 / original-power = 45%

d=.9 / original-power=79%

Note:

p-curve does not test if p-hacking happens.
 (it "always" does)

Rather:

• Whether p-hacking was so intense that it eliminated evidential value (if any).

Outline

- Shape
- Inference
- Demonstration
- How often is p-curve wrong?
- Effect-size estimation
- Selecting *p*-values

Inference with p-curve

- 1) Right-skewed?
- 2) Flatter than studies powered at 33%?
- 3) Left-skewed?

Outline

- Shape
- Inference
- Demonstration
- How often is p-curve wrong?
- Effect-size estimation
- Selecting *p*-values

Set 1: JPSP with no exclusions nor transformations

Set 2: JPSP result reported only with covariate

• Next: New Example

One Swallow Doesn't Make a Summer: New Evidence on Anchoring Effects

By Zacharias Maniadis, Fabio Tufano, and John A. List*

Some researchers have argued that anchoring in economic valuations casts doubt on the assumption of consistent and stable preferences. We present new evidence that explores the strength of certain anchoring results. We then present a theoretical framework that provides insights into why we should be cautious of initial empirical findings in general. The model importantly highlights that the rate of false positives depends not only on the observed significance level, but also on statistical power, research priors, and the number of scholars exploring the question. Importantly, a few independent replications dramatically increase the chances that the original finding is true. (JEL D12, C91)

First draft: 2013 10 24 This draft: 2014 04 11

Anchoring is Not a False-Positive: Maniadis, Tufano, and List's (2014) "Failure-to-Replicate" is Actually Entirely Consistent with the Original

Uri Simonsohn University of Pennsylvania <u>uws@wharton.upenn.edu</u> Joseph P. Simmons University of Pennsylvania jpsimmo@wharton.upenn.edu Leif D. Nelson UC Berkeley leif nelson@haas.berkeley.edu

Anchoring and WTA

• Bad replication $_{\mathsf{T}} \rightarrow$ Good original

• Was original a false-positive?

p-curve results

p-value	
Statistical Inference	Results
 Studies contain evidential value (right-skewed) 	χ ² (10)=33.76, <i>p</i> =.0002
2) Studies lack evidential value (flatter than 33% power)	χ ² (10)=2.8, <i>p</i> =.9857
 Studies lack evidential value and were intensely p-hacked (left-skewed) 	χ ² (10)=1.35, <i>p</i> =.9993

When effect exists, how often does *p*-curve say "<u>evidential value</u>"

When effect exists, how often does *p*-curve say "no evidential value"

Highlights

P-curve is 'never' wrong on properly powered studies.

Broad big picture applications

- Possible uses:
 - Meta-analyses of X on Y
 - Meta-analyses of X on anything
 - Meta-analyses of anything on Y
 - Relative truth of opposing findings
 - X is good for Y, vs
 - X is bad for Y
 - Is this journal, on average, true?
 - Universities vs. pharmaceuticals

Everyday applications

(note: 5 p-values can be plenty)

- **Reader**: Should I read this paper?
- **Researcher**: Run expensive follow-up?
- **Researcher**: Explain inconsistent previous finding
- **Reviewer**: Ask for direct replications?

• Next.

- Simulated meta-analysis, file-drawering studies.

Average significant effect ….....w/ trim-and-fill correction -p-curve's estimate _____ True effect size

В

• Next.

- Simulated meta-analysis, *p*-hacking

---- Average significant effect ---- Average of all effects - - p-curve's estimate ----- True effect size

• Next. Precision from few studies

Number of studies in *p*-curve

- Next. Demonstration 1: Many Labs Replication project
 - Real study, participants, data
 - But, see all attempts

Investigating Variation in Replicability: A "Many Labs" Replication Project

Contributors: Richard A. Klein | Kate Ratliff | Michelangelo Vianello | Reginald B. Adams, Jr. | Stepan Bahnik | Michael Mark Brandt | Beach Brooks | Claudia Brumbaugh | Zeynep Cemalcilar | Jesse J. Chandler | Winnee Cheong | Willian Matthew Eisner | Natalia Frankowska | David Furrow | Elisa Maria Galliani | Fred Hasselman | Joshua A. Hicks | Jame Jeffrey R. Huntsinger | Hans IJzerman | Melissa-Sue John | Jennifer Joy-Gaba | Heather Kappes | Lacy Elise Krueger Robyn Mallett | Wendy Morris | Anthony J. Nelson | Jason A. Nier | Grant Packard | Ronaldo Pilati | Abraham M. Rutcl Skorinko | Robert W. Smith | Troy G. Steiner | Justin Storbeck | Lyn van swol | Donna Thompson | Anna van 't Veer | L Aaron Wichman | Julie A. Woodzicka | Brian A. Nosek

- 36 labs
- 13 "effects"
 - Example 1. Sunk Cost (Significant: 50% labs)
 - Example 2. Asian Disease (86%)

• Next. Demonstration 2: Choice Overload

A demonstration Choice Overload meta-analysis

Author	Detail	Year	N	weight	d		1
Inbar Hanko Botti & Gilovich	study 1 time pressure	2008	21	0.4%	1 21	·	
Ivengar & Lepper	chocolate study	2000	67	1.4%	0.88	_	
Greifeneder, Scheibehenne, & Kleber	experiment 1, 6 attributes	2010	40	0.8%	0.81	·	
Shah & Wolford	-	2007	80	1.6%	0.77		
lyengar & Lepper	jam study	2000	249	4.9%	0.77		
Chernev	study 1, no ideal point	2003	43	0.9%	0.72		ala ala
Medilskaja & Hogarin Medilskaja & Hogarin	-	2009	60	0.0%	0.66		**
Cherney	study 2 no ideal point	2003	41	0.8%	0.57		
Greifeneder, Scheibehenne, & Kleber	experiment 2, 9 attributes	2010	52	1.0%	0.54		
Diehl & Poynor	study 2	2007	65	1.3%	0.54	· · · · · · · · · · · · · · · · · · ·	Chaica is had
Gingras	study 4	2003	69	1.4%	0.52	_	
Haynes		2009	69	1.4%	0.48		
Chernev Sebeibebenne Creifeneder 8 Tedd	study 3, low ideal point score	2003	86	1.7%	0.47		
Diebl & Povnor	study 3	2009	165	2.1%	0.39		
Gao & Simonson	study 3 study 4 select-buy	2007	43	0.9%	0.32		7
Mogilner, Rudnick, & Ivengar	preference matchers	2008	60	0.9%	0.09	_	
Lin & Wu	_	2006	82	1.6%	0.08	i∎	
Inbar, Hanko, Botti, & Gilovich	study 1, no time pressure	2008	21	0.4%	0.08	i•	
Fasolo, Carmeci, & Misuraca	study 1	2009	64	1.3%	0.06		
Kleinschmidt	unconstrained set	2008	61	1.2%	0.05		
Lenton & Stewart	-	2007	68	1.4%	0.04		
Scheibehenne & Todd		2008	191	3.9%	0.02		
Reutskaja	study 2	2008	60	1.2%	0.00	_	
Kahn & Wansink	study 1, disorganized	2004	18	0.4%	0.00		
Kahn & Wansink	study 2, disorganized	2004	45	0.9%	0.00	_	
Kahn & Wansink	study 5, disorganized	2004	54	1.1%	0.00		
Gingras	study 2, expertise	2003	61	1.2%	0.00		
Gingras	study 2, no expertise	2003	61	1.2%	0.00		
Gingras Kilchherr Wänke & Messner	study 3 sundae study simultaneous	2003	40	0.8%	-0.02		
Scheibehenne, Greifeneder, & Todd	charity study 1, 5 vs. 40	2000	57	1.2%	-0.02		
Scheibehenne, Greifeneder, & Todd	music study, US sample	2009	174	3.5%	-0.05		
Haynes & Olson	study 2	2007	72	1.5%	-0.05	e	
Scheibehenne	wine study	2008	280	5.7%	-0.08	— — —	
Lenton, Fasolo, & Todd		2008	89	1.8%	-0.09		
Scheibenenne, Greifeneder, & Iodd	restaurant study	2009	80	1.6%	-0.11		
Greifeneder Scheibehenne & Kleber	experiment 1 1 attribute	2008	40	0.8%	-0.12		
Scheibehenne, Greifeneder, & Todd	charity study 2. USA	2009	112	2.0%	-0.16		
Scheibehenne, Greifeneder, & Todd	music study, German sample	2009	160	3.2%	-0.17		
Kleinschmidt	constrained set	2008	60	1.2%	-0.17	e ;	
Greifeneder	-	2008	80	1.6%	-0.20		
Söllner & Newell	perfume study	2009	57	1.2%	-0.22		
Alleman, et al. Essele, Carmoni & Minurana	- etudu 2	2007	120	1.0%	-0.24		
Scheibehenne	ielly bean study	2009	66	1.3%	-0.20		
Greifeneder, Scheibehenne, & Kleber	experiment 2, 4 attributes	2010	52	1.0%	-0.28	_	
Chernev	study 3, high ideal point score	2003	81	1.6%	-0.28		
Scheibehenne, Greifeneder, & Todd	charity study 1, 2 vs. 30	2009	60	1.2%	-0.31	_	
Chernev	study 2, ideal point available	2003	34	0.7%	-0.33		
Chernev	study 1, ideal point available	2003	45	0.9%	-0.36		Choice is good
Effron & Lepper	_	2006	40	0.9%	-0.43		Churce is good
Berger, Draganska, & Simonson	study 3	2007	90	1.8%	-0.52	!	
Gingras	study 1	2003	89	1.7%	-0.60		
Gao & Simonson	study 4, buy-select	2008	43	0.9%	-0.67	i	
Söllner & Newell	sun cream study	2009	32	0.6%	-0.82		4 4
Kahn & Wansink	study 5, organized	2004	54	1.0%	-0.82		~ 个 个
Kahn & Wansink	study 2, organized	2004	45	0.8%	-0.94		
Nami o Walishik	suuty 1, organized	2004	10	0.3%	-1.09		
Summary		N =	5036	D	= 0.02		
-							-
					-	-1.5 -1 -0.5 0.5 1 1.5 2	
						effect size (d)	

How to think about p-values

- When a study has lots of statistical power (big effect + big sample), expect to see very small p-values.
- When you see a really big p-value (p = .048), you should be concerned.
- Unexpected thought: When the p-values are really small in the absence of statistical power, you can have different (more unsettling) concerns.

I don't have any more slides, but I have many more thoughts and opinions.

Ask.

datacolada.org

P-curve

Paper 1 - Evidential Value	Paper 2 - Effect size	The online app	The User Guide	Supp Materials
Aver 1 The aboft 2011013 The study 2011013 The server A Key To The Till Denser The server A Key To The Till Denser The server of Planchman Control of Planchman Key Control of Planchman Control of Planchman Key Control of Planchman Control of Planchman Control The server and Control of Planchman Control of Planchman Control The server and Control of Planchman Control of Pla	P/Curve Frans Publication Bins: Orbining Unbiased Effect Size Estimates from Published Studies Alone Lot 20 Volum: US Hansachs Joseph P Simons University (Collins), Usivesby of Proceptions, Usivesby of Proceptions, Behlicy	The period results	I Utilizate User-Guide to the Pourve View of the set of the second secon	<pre>Stateste gesking (ISSES(.S), A), every, d, seed, and); 'sizzerangi 'bits everyprint(ISSE), i static) ; '() Generate every file vils intert rowr des gest 'd) i risk intert 'd) i risk intert 'd) i risk intert 'dis i randm 'wriskles for each of two valls? des gest 'dis i randm 'wriskles for each of two valls? des gest 'dis i randm 'wriskles for each of two valls? des gest 'dis i randm 'wriskles for each of two valls? des gest 'dis i read' 'dis i read' 'dis each'seach'lisk' 'di sectoriese'''''''''''''''''''''''''''''''''''</pre>
		The observed p-curve includes 7 p-values, of which 6 are p-co.org. Hinary test for right daws p-colory, for lash-sizes p-copyra.		

p-curve.com