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Who am I? 

• Experimental psychologist who studies 
judgment and decision making.  
– And has interests in methodological issues 
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Who are you?  

• Grad Student vs. Post-Doc vs. Faculty? 
• Psychology vs. Economics vs. Other? 
• Have you read any papers that I have written? 

– Really? Which ones? 
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[not a rhetorical question] 



Things I want you to get out of this 

• It is quite easy to get a false-positive finding 
through p-hacking. (5%) 

• Transparent reporting is critical to improving 
scientific value. (5%) 

• It is (very) hard to know how to correctly 
power studies, but there is no such thing as 
overpowering. (30%) 

• You can learn a lot from a few p-values. 
(remainder %)  
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This will be most helpful to you if you 
ask questions.  

 
A discussion will be more interesting 

than a lecture. 
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SLIDES ABOUT P-HACKING 
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False-Positives are Easy 

• It is common practice in all sciences to report 
less than everything.  
– So people only report the good stuff. We call this 

p-Hacking. 
– Accordingly, what we see is too “good” to be true. 
– We identify six ways in which people do that. 
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Six Ways to p-Hack 
1. Stop collecting data once p<.05 

2. Analyze many measures, but report only 
those with p<.05. 

3. Collect and analyze many conditions, but 
only report those with p<.05. 

4. Use covariates to get p<.05. 

5. Exclude participants to get p<.05. 

6. Transform the data to get p<.05. 
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OK, but does that matter very much? 

• As a field we have agreed on p<.05. (i.e., a 5% 
false positive rate). 

• If we allow p-hacking, then that false positive 
rate is actually 61%. 

• Conclusion: p-hacking is a potential 
catastrophe to scientific inference. 
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P-Hacking is Solved Through 
Transparent Reporting 

• Instead of reporting only the good stuff, just 
report all the stuff.  
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P-Hacking is Solved Through 
Transparent Reporting 

• Solution 1: 
1. Report sample size determination. 
2. N>20 [note: I will tell you later about how this number is insanely low. Sorry. Our mistake.] 

3. List all of your measures. 
4. List all of your conditions. 
5. If excluding, report without exclusion as well. 
6. If covariates, report without. 
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P-Hacking is Solved Through 
Transparent Reporting 

• Solution 2: 
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P-Hacking is Solved Through 
Transparent Reporting 

• Implications: 
– Exploration is necessary; therefore replication is 

as well. 
– Without p-hacking, fewer significant findings; 

therefore fewer papers. 
– Without p-hacking, need more power; therefore 

more participants. 
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SLIDES ABOUT POWER 
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Motivation 
• With p-hacking,  

– statistical power is irrelevant, most studies work 
• Without p-hacking.  

– take power seriously, or most studies fail 
• Reminder. Power analysis: 

• Guess effect size (d) 
• Set sample size (n) 

• Our question:  Can we make guessing d easier? 
• Our answer:  
• Power analysis is not a practical way to take 

power seriously 

No 



How to guess d? 

 

• Pilot 
 

• Prior literature 
 

• Theory/gut 



Some kind words before the bashing  

 
• Pilots: They are good for: 

– Do participants get it? 
– Ceiling effects? 
– Smooth procedure? 

• Kind words end here. 



Pilots: useless to set sample size 

• Say Pilot: n=20  
– �̂� = .2  

– �̂� = .5 

– �̂� = .8  
      



• In words 
– Estimates of d have too much sampling error. 

 
• In more interesting words 

– Next. 



Think of it this way 
Say in actuality you need n=75 
Run Pilot: n=20  
What will Pilot say you need? 
• Pilot 1: “you need n=832” 
• Pilot 2: “you need n=53” 
• Pilot 3: “you need n=96” 
• Pilot 4: “you need n=48” 
• Pilot 5: “you need n=196” 
• Pilot 6: “you need n=10” 
• Pilot 7: “you need n=311” 

 
 
Thanks  Pilot! 

 
 



 
n=20 is not enough. 
 
How many subjects do you need 
 

to know  
 
how many subjects you need? 



n=25 

n=50 

? 

Need a Pilot with… 
n=133 



n=50 

n=100 

? 

Need a Pilot with… 
n=276 



n 

 2n 

? 

Need: 5n 

“Theorem” 1 



How to guess d? 

 
• Pilot 
• Existing findings 
• Theory/gut 



Existing findings 

• One hand 
– Larger samples 

• Other hand 
– Publication bias 
– More noise 

• ≠ sample 
• ≠ design 
• ≠ measures 

 



Best (im)possible case scenario 

 
 

• Would guessing d be reasonable based on 
other studies? 



“Many Labs” Replication Project 
• Klein et al., 
• 36 labs 
• 12 countries 
• N=6344 
• Same 13 experiments 



 

NOISE 

How much TV per day? 



If 5 identical studies already done 
• Best guess: n=85 
• How sure are you? 
 

Best case scenario gives range 3:1 



Reality is massively worse 

• Nobody runs 6th identical study. 
– Moderator: Fluency 
– Mediator: Perceived-norms 
– DV: ‘Real’ behavior 

• Publication bias   
 

 
 



Where to get d from? 

 
• Pilot 
• Existing findings 
• Theory/gut 



Say you think/feel d~.4 

d=.44  ~ .4 
n=83 
d=.35, ~  .4 
n=130 
 
Rounding error  100 more participants 



Transition (key) slide 

• Guessing d is completely impractical 
  Power analysis is also. 
• Step back: Problem with underpowering? 
 
• Unclear what failure means. 
 
• Well, when you put it that way: 
   Let’s power so that we know what failure 
means. 



Existing view 

1. Goal: Success 
 

2. Guess d 
 
 

3. Set n: 
 “80%” success 

 
 
 

 
 

 
 

New View 

1. Goal: Learn from results  
 
2. Accept d is unknown 
   If interesting 0 possible 
    If 0 possiblevery small possible 
 
3. Set n: 
 100% learning 
 Works: keep going 
 Fails: Go Home  



What is “Going Big”? 
A. Limited resources  (most cases) 

(e.g., lab studies) 
– What n are you willing to pay for this effect? 
– Run n 

• Fails, too small for me. 
• Works, keep going, adjust n. 

B.  ‘Unlimited’ resources (fewest cases) 
(e.g., Project Implicit, Facebook) 
– Smallest effect you care about 

 
 



SLIDES ABOUT P-VALUES 
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Defining Evidential Value 

• Statistical significance 
Single finding: 
unlikely result of chance 

 
Could be caused by selective reporting rather than 
chance 
 
• Evidential value 

Set of significant findings: 
 unlikely result of selective reporting 
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Motivation: we only publish if p<.05 
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Motivation 

 

Nonexisting effects: only see false-positive evidence 
Existing  effects:         only see strongest evidence 

 

Published scientific evidence is not  

representative of reality. 
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Outline 

 
• Shape 
• Inference  
• Demonstration 
• How often is p-curve wrong? 
• Effect size estimation 
• Selecting p-values 
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p-curve’s shape  

 

• Effect does not exist: flat 
 

• Effect exists: right-skew. 
 (more lows than highs) 
 

• Intensely p-hacked: left-skew 
 (more highs than lows) 
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Why flat if null is true? 

p-value: 
 prob(result | null is true ).  
 
Under the null: 
• What percent of findings p ≤.30 

– 30% 
• What percent of findings p ≤.05 

– 5% 
• What percent of findings p ≤.04 

– 4% 
• What percent of findings p ≤.03 

– 3% 
 
Got it. 43 



Why more lows than high if true? 
(right skew) 

 
• Height: men vs. women 
• N = Philadelphia 
• What result is more likely? 

In Philadelphia, men taller than women (p=.047) 
                                    (p=.007) 
 

• Not into intuition?  
 Differential convexity of the density function 
 Wallis (Econometrica, 1942) 
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Why left skew with p-hacking? 

• Because p-hackers have limited ambition 
• p=.21 
 Drop if >2.5 SD 

• p=.13 
 Control for gender 

• p=.04 
 Write Intro 

 
• If we stop p-hacking as soon as p<.05,  
• Won’t get to p=.02 very often. 
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Plotting Expected P-curves 

• Two-sample t-tests. 
• True effect sizes  

– d=0, d=.3, d=.6, d=.9 

• p-hacking 
– No: n=20     
– Yes: n={20,25,30,35,40}    
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Nonexisting effect (n=20, d=0) 
 

As many p<.01 as p>.04 
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n=20, d=.3  /  power=14% 
Two p<.01 for every p>.04 
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n=20, d=.6  /  power = 45% 
Five p<.01 per every one p>.04 
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n=20, d=.9  /  power=79% 
Eigtheen p<.01 per every p>.04. 
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Adding p-hacking 

n={20,25,30,35,40} 
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d=0 
 

 

52 



d=.3 / original power=14% 
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d=.6 / original-power = 45% 
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d=.9 / original-power=79% 
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p-hacked findings? 

Effect 
Exists? 

NO   YES 

YES 

NO 
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Note: 

 
• p-curve does not test if p-hacking happens. 
(it “always” does) 

 
Rather:  

 
• Whether p-hacking was so intense that it 

eliminated evidential value (if any). 
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Outline 

 
• Shape 
• Inference  
• Demonstration 
• How often is p-curve wrong? 
• Effect-size estimation 
• Selecting p-values 
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Inference with p-curve 

 
 
 
 

1) Right-skewed? 
2) Flatter than studies powered at 33%? 
3) Left-skewed? 
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Outline 

 
• Shape 
• Inference  
• Demonstration 
• How often is p-curve wrong? 
• Effect-size estimation 
• Selecting p-values 
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Set 1: JPSP with no exclusions nor 
transformations 
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Set 2: JPSP result reported only with 
covariate 
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• Next: New Example  
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65 
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Anchoring and WTA  



• Bad replication  ┐→ Good original 
 

• Was original a false-positive? 

68 
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When effect exists, how often does 
p-curve say “evidential value” 

70 

Highlights: 
More power at 5 
Certain with 80% 



When effect exists, how often does  
p-curve say “no evidential value” 

71 

Highlights 
• P-curve is 

‘never’ wrong 
on properly 
powered 
studies. 



Broad big picture applications 

• Possible uses: 
– Meta-analyses of X on Y 
– Meta-analyses of X on anything 
– Meta-analyses of anything on Y 
– Relative truth of opposing findings 

• X is good for Y, vs 
• X is bad for Y 

– Is this journal, on average, true? 
– Universities vs. pharmaceuticals 
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Everyday applications 
(note: 5 p-values can be plenty) 

• Reader: Should I read this paper? 
 

• Researcher: Run expensive follow-up? 
 

• Researcher: Explain inconsistent previous 
finding 
 

• Reviewer: Ask for direct replications? 
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• Next. 
–  Simulated meta-analysis, file-drawering studies. 
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• Next. 
–  Simulated meta-analysis, p-hacking 
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• Next. Precision from few studies 
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• Next. Demonstration 1: Many Labs Replication 
project 
– Real study, participants, data 
– But, see all attempts 
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• 36 labs 
• 13 “effects” 

– Example 1. Sunk Cost (Significant: 50%  labs) 
– Example 2. Asian Disease (86%) 
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• Next. Demonstration 2: Choice Overload 
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A demonstration 
Choice Overload meta-analysis 
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Choice is bad 

Choice is good 

** 

** 
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How to think about p-values 

• When a study has lots of statistical power (big 
effect + big sample), expect to see very small 
p-values. 

• When you see a really big p-value (p = .048), 
you should be concerned. 

• Unexpected thought: When the p-values are 
really small in the absence of statistical 
power, you can have different (more 
unsettling) concerns. 
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I don’t have any more slides, but I have many 
more thoughts and opinions. 
 
Ask. 
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datacolada.org 

p-curve.com 
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