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Pre-specification is needed 

• Statistical Inference relies on having a well-
defined experiment 
– Population, sampling, data collection, analysis 

– An estimator is an algorithm  
• ie. a computer program 

• If we do not have a pre-specified analysis plan 
(estimator), we no longer have a well-defined 
experiment 
– Estimator includes any decisions about  

• Which covariates we will adjust for 

• Model specification used to adjust 

• Many more…  

 

 
 

 
 

 
 

 

 



Dangers of ad hoc analytic decisions 

• Run a bunch of regressions and choose the 
one with 

1. Smallest p value? 

2. Results that make the most sense? 

Misleading (under) estimate of uncertainty 

Bias 
– Humans are good at creating narratives from 

complexity 

– Tendency to confirm what we expect to find 

• As long there is “art” in statistics, we will 
continue to make a lot of wrong inferences 

 
 

 
 

 
 

 

 



Pre-specification also has dangers 

• Ex. Randomized Trials 

– Adjustment can reduce variance/improve power 

– Which covariate(s) to adjust for? 

– Pre-specify a poor choice -> Less Power/Precision 

• Ex. Observational Data 

– Range of identification/adjustment strategies 

– Which variables to adjust for? Specification? 

– Pre-specify a poor choice -> Bias 

• We must look at and learn from our data to 
make good decisions 



Data-Adaptive Pre-Specification…. 

• Machine-learning to the rescue? 

• Wide range of data-adaptive or machine 
learning methods for prediction/classification 

• Look at and learn from data in an a priori 
specified way 

 



Example: “Super Learner” 
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• “Competition” of algorithms 

– Parametric models 

– Data-adaptive (ex. Random 
forest, Neural nets) 

• Best “team” wins 

– Convex combination of 
algorithms 

• Performance judged on 
independent data  

– Internal data splits 

 

 

Van der Laan, Polley, 2007 



Example: “Super Learner” 
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Problem solved? 

• Not without some additional help… 

– Sophisticated machine learning methods available 

– Powerful tools for Prediction 

• However, if used isolation don’t let us make 
reliable inferences about causally motivated 
parameters 

– Not targeting the question of interest 

Too much bias and misleading confidence 
intervals/hypothesis tests 

 

 

 



Targeted Learning 

• Targeted Maximum Likelihood Estimation 
– General statistical methodology 

• For a range of causally and non-causally motivated 
statistical quantities 

– Uses state-of-the art machine learning  

– Updates output in a targeted way 
• Reduce bias 

• Regain statistical properties for reliable inference 

• Efficient (minimal asymptotic variance)  
– If nuisance parameters estimated well 

• Often nice robustness properties  
Van der Laan, Rose, Springer  2011 



Adaptive Pre-Specification: 
Randomized Trials 

SEARCH Consortium: 

Sustainable East Africa Research  

in Community Health  



SEARCH: Study Questions and Design 

SEARCH: Cluster randomized trial of universal vs. standard ART 

16 communities 

n = 10,000 each 

 ART at all CD4+ 

Annual & targeted testing 

Enhanced linkage & 

retention 

Country-guided ART 

Community Health 
• HIV incidence 

• HIV population viral metrics 

• AIDS 

• Maternal and child health 

• TB 

• NCD (HT, DM)  

Outcomes 

Year 3 and 

5  

Community 

Productivity/Costs 
• Workforce participation 

• Child labor prevalence 

• Agricultural output 

• Household income 

• Educational attainment 

• Healthcare utilization 

SEARCH 

Partners 
PEPFAR 

 NIH  

WHO  

World Bank 

UNAIDS 

Gilead 

Sciences 

Uganda MOH 
Kenya MOH 

UGANDA KENYA 

Mbarara 

Tororo 

Nyanza 

Standard of 

Care: 

Intervention 

Communities: 

HIV 

Screening/Diagnosis 

Malaria testing & care 

HTN and Diabetes 

testing 

Maternal/child health 

Community 

Health Campaign 

16 communities 

n = 10,000 each 

32 communities of 10,000 each 

3 geographic regions  

• Can a population-based ART 

strategy “shut down” new HIV 

infections? 
• What are the additional gains?(maternal 

child health, TB, education, household 

earning power) 

• What is the best way to do it? Cost? 

• Can efficient HIV chronic care models be 

adapted to establish care for other 

chronic diseases (hypertension and 

diabetes)? 



SEARCH: Pre-Specified Analysis Plan 

• Primary study outcome: Impact on Incident HIV 

1. Estimate community-level outcome: 5 year HIV 
cumulative incidence  

– Probability of becoming infected over 5 years given 
uninfected at baseline 

2. Compare average cumulative incidence 
between control and intervention communities 

– 32 matched pairs-> limited ability to adjust 

– Many candidate adjustment variables… 

– Which (if any) community covariate to adjust for? 

 

 



Data-adaptive pre-specification 

• Pre-specify:  

1. Candidate adjustment variables 

• Baseline HIV prevalence 

• % population with HIV viral load<400 copies/ml 

• Median HIV viral load 

• None (no adjustment)  

2. Final estimator 

– Method of adjustment: Main term logistic regression of 
outcome on intervention and a single covariate 

– Algorithm for selecting between candidate regressions: 
Leave-one-out cross validation 

 

 

 

 



Leave-one-out cross validation 

1. Fit each candidate regression on 15/16 pairs 

– Evaluate squared prediction error on remaining pair 

2. Repeat 16 times, leaving out each pair in turn 

– 32 squared prediction errors - one for each community 

3. Average prediction errors across communities and 
select regression with the smallest 

– Best performance on independent data 

4. Re-fit selected regression on all 32 communities 
and use to estimate treatment effect 

– In RCT with many classes of glm, no update needed 

 



Data-Adaptive Adjustment: More 
power and good Type I error control 

0.776 0.772 
0.856 0.858 

0.038 0.048 0.04 0.04 

Unadjusted Poor Choice of
Adjustment

Variable

Cross-Validation
Selector

Oracle Selector

Power (Model-based Incidence projections)

Type I Error (under null)



Adaptive Pre-Specification: 
Observational Analyses 

International Epidemiologic 
Databases to Evaluate AIDS- 

 East Africa 



HIV treatment gap in resource-limited 
settings 

 

 

 

 

 

 

 

• 4.5 on antiretroviral therapy, 9 million in need 

• Shortage of financial and human resources 



Low Risk Express Care (LREC) 

• Task-shifting HIV care 
for stable patients from 
clinicians to nurses 

• Implemented in 15 
clinics in Kenya 2007-
2008 

– USAID- AMPATH 
partnership 

• Subset of eligible patients enrolled at varying 
times (Non-random) 



Effect of LREC enrollment? 

– Patient population: 15,225 Subjects eligible for LREC 
following program availability in a participating clinic   

• t=0: first date eligible for LREC after available in clinic 

• 5963 (39%) subsequently enroll 

– Outcome: “In-Care” Survival  

• Failure = Death (any cause) or “Loss to follow up” (fail to 
return to clinic for 6.5 months) 

– Longitudinal socio-demographic and clinical data 

• Age, sex 

• Disease severity, CD4 count, tuberculosis, pregnancy, 
antiretroviral use, adherence, etc…   

 

 



Identification requires non-standard 
estimand 

• All patients in analysis eligible (“low risk”)  

• Enrollment at provider discretion 
– Sicker patients less likely to be enrolled 

– Drivers of enrollment affected by prior treatment 

 

 

 

 

 

• Even with no unmeasured confounding, can’t 
identify using standard adjustment methods 

 

 

Enrollment (t=1) Enrollment (t=2) 

Health (t=1) Health (t=2) 

In Care Survival 

Causal Effect  

of Interest 



Estimators  

1. Inverse Probability Weighted Estimator 

– Current “Best Practice” 

– Propensity score based weights 

• Ex: Sicker patients that enroll/ healthier patients that 
don’t enroll get up-weighted 

– Propensity score estimated with pre-specified 
parametric model (main-term logistic regression) 

2. Targeted Maximum Likelihood Estimation 

– Super Learner to estimate  

• Series of iterated conditional expectations  

• Propensity score (for update) 

 

 

 

Petersen et al, JCI 2014 



TMLE-Super Learner: Improved 
control for measured confounders 

Unadjusted NPMLE IPW (Parametric 
Propensity score) 

TMLE  (Super Learner)  

11% (9%, 14%) 12% (9%, 15%) 8% (5%, 10%) 

• Estimated reduction in probability of death/drop-out by 

month 21 if enrolled immediately in LREC vs. never enrolled  



Targeted Learning:  
Data-adaptive Pre-Specification 

• Learn more… 

– Use flexible estimators that respond to the data 

– Data-adaptive or machine learning methods are 
not just for exploratory analysis 

– The problems we face are hard – if we don’t 
respond to our data we will not get good answers 

• But learn rigorously… 

– The estimator is an a priori specified algorithm 

– The algorithm itself is flexible- learns from data 

– Targeted to retain validity of statistical inference 



Towards a General Learning System 

• Question 

– Prediction versus causal 

– Point, longitudinal, static, 
dynamic, stochastic 
exposures 

• Data 

– Longitudinal, Hierarchical 

– Missing data 

• Model 

– Causal and statistical 

– Knowledge about data 
generating process 

 

• Target statistical 
parameter (estimand) 

• Point estimate 

• Statistical Inference 

• Diagnostics 

• Suggested responses if 
insufficient support 

• Guidance for 
interpretation  

• Ex: Assumptions for 
specific interpretations 

 

User Input Output 



Towards a General Learning System 

• Question 

– Prediction versus causal 

– Point, longitudinal, static, 
dynamic, stochastic 
exposures 

• Data 

– Longitudinal, Hierarchical 

– Missing data 

• Model 

– Causal and statistical 

– Knowledge about data 
generating process 

 

User Input 

• Understanding and 
articulating the relevant 
questions 

• Understanding the data  

• Understanding (and 
optimizing) the 
experiment that 
generated it 

– Study design 

– Expert knowledge 
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Software (Public R packages) 
 

1. Super Learner: SuperLearner()  

• Ensemble Machine Learning for Prediction 

 

2. Targeted Maximum Likelihood Estimation: ltmle() 

• Effect estimation of point treatment and longitudinal 
exposures 

• Super Learner + targeting for effect parameter 

• Dynamic Interventions 

• Mediation 

• Censoring, Missing Data 

 

 

 


