
Programming 
FUNdamentals

Dav Clark



Rochelle’s Law (paraphrased)

The difference between 
“clueless users” and “tech 
support” is a willingness to 
google for a few minutes 

longer.



D-Lab Offerings

● We are a “front desk” for social scientists
● Training opportunities:

○ Workshops and Intensives (like this)
○ Working groups
○ Consulting

● A space for you & your team



Let’s get a sense of where 
you’re at...



Topics - Stuff on your computer

● GUI? Huh?
● Files, folders and directories - organized 

so you can find them again!
● What is a terminal / command prompt? 
● What's a text editor / IDE / "application"? 
● Pros and cons of using applications vs. 

using programming / scripting.



Topics - Data & Networking

● Overview of storage formats: XML, plain 
text, "document formats," CSV, binary 
formats (e.g., HDF5) and databases.

● How big is my data, really? And how does 
this relate to networking, storage, and 
compute choices?

● How does the web work? What is a server?



Files and folders (names for things)

● We live in a world of search, and that 
often works...

● But it’s better to have two ways to find 
things in case one doesn’t work!

● Usually it won’t take much time to give 
something a long, descriptive name

● What do you do that works?



● Graphical User Interface
● In short

○ Graphical = visual, usually 2D

○ User Interface = A way for you to interact with the 
computer

● What’s the alternative?
● Text!

GUI Interfaces



Terminal / Command Prompt

● Who here has a command prompt 
program installed?
○ OS X: “Terminal.app”

○ Windows: “powershell.exe” (and “cmd.exe”), but 
Git Bash is better!

○ Other systems: something with “term” in it

● Basic commands: ls, pwd, man <cmd> 
(‘q’ to exit), cd, rm, mv, cp

● These usually correspond to things you 
can do graphically



GUIs

Easier to “discover”

Hard to use over 
network (except via 

web)

Mistakes are often 
more obvious

No need to remember 
where anything is - 

just type it

Easy to use over ssh 
(a networked 

command prompt)

Data often not visible

Textual 
Commands



More on Text



Editing “text files”

● Who has a text editor installed?
○ Windows: “notepad.exe”
○ OS X: “TextEdit.app”
○ Other systems: probably “nano”

● But all of those are kinda lame...
1. Use whatever your colleagues use
2. Use Sublime Text 2 (and buy it)
3. But you’d rather have something “free?”

a. Windows: Notepad++ (Atom soon)
b. OS X: TextWrangler, TextMate 2, or Atom
c. Linux, etc.: gedit, kate on KDE (Atom soon)



But besides text editors...

● GUIs for many programs (like SPSS, 
Stata) may edit / produce text files

● Other applications (like Excel) have the 
option to save “plain text” (like CSV)

● Special-purpose code editors (IDEs) for 
specific programming tasks
○ OS X: Xcode
○ Windows: Visual Studio
○ Java (and friends): Eclipse, IntelliJ



The benefits of text (for data)

1. Almost every environment can understand 
text
a. Even if that’s not the “default” format (cf. Office)
b. BUT - encoding introduces some gotchas

2. Your computer comes with a text editor
3. Command line interfaces are text-based
4. Usually very obvious what’s going on!



The disadvantages of text (for data)

1. It’s slow
2. Encoding issues



Binary
How Computers Really Think



You think

a
97

“1,204.89”

01100001
01100001

00110001 00101100
00110010 00110000
00110100 00101110
00111000 00111001

That same space can 
hold 16 digits * 10384!

Computer thinks



The benefits of binary data

1. It’s how computers think:
a. Faster
b. More compact (smaller files for the same data)

2. Can have explicit metadata, avoiding 
encoding issues



Disadvantages of binary data

1. Often need special programs to read
2. If a file gets corrupted, you may lose all 

your data
3. It’s generally not worth using until you 

have a really big speed or space problem!



Discuss file formats

Your pick:
● Binary

○ HDF5 (& NetCDF4)
○ Databases (not quite a file format)
○ Documents: doc, exc, rtf, etc.

● “Plain Text”
○ XML, HTML, etc.
○ JSON, YAML
○ Doc-like: CSV, txt (+ markdown, etc.)
○ Most programming languages



So, how big is your data?

Sadly, you may have to do some arithmetic…
● Conceptually map the amount of data you 

expect (e.g., number of observations * 
number of bytes per observation)

● Establish data transfer / processing rates 
using smaller samples

● Be careful of nonlinear demands 
○ e.g., matrix math may require 4 (or more) times 

more processing for twice the data



Programming

● Like a playbook or recipe
○ Multiple steps get done reliably
○ Almost always text based

● Common elements:
○ Names for things
○ Data
○ Containers for related data
○ Ways to efficiently repeat things - functions and 

loops
○ Ways to make decisions (if / then)

● Many ways for things to break / be confusing
● Start simple!





=?



Dav’s Law

If you already know how to 
get your work done, and 

can share that method with 
others transparently…

Just do it that way!



Error Messages (and what to do)

● google: name-of-program + text in error 
message
○ Remove user- and data-specific information first!

● See if you can find examples that do and 
don’t produce the error

● Stack Overflow (and friends)



A bit on networking and servers

● Everything you can “do” on a computer is 
“done” by one or more programs.

● Programs can run on your computer or on 
another computer you have access to:
○ E.g., web servers

● Some programs even if they are running on 
your computer like to “pretend” they are on a 
network (and actually, they are):
○ E.g., web servers
○ Databases


